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*1. bakrgn n Summary

The purpose of this research is to see how surface roughness

affects the hydrodynamic stability of a supersonic laminar boundary

layer. This note summarizes work done in the second (1982-1983) year

of the program.

The outcome of the first year of the program had been to

demonstrate the great resistance of the supersonic flow to

destabilization and tripping by roughness, to choose a final roughness

capable of such destabilization and tripping, and to complete boundary

layer surveys on an axisymmetric body so roughened as a prerequisite

to the stability measurements. In the present period the geometry was

changed to a planar (flat plate) one to correct deff*ciencies found in

the axisymmetric flow, which however uses the same roughness geometry

as before. The flowfield measurements on this model have been

completed, as have about 30% of the final stability measurements.
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2. JA rimaal Activity

Work in the 1982-1983 period consisted of (a) fabricating the

experimental models, (b) measuring the flovfield over the models, and

(c) making the initial stability measurements. The basic model

consists of a 22.4 x 7.9 cm. flat plate whose surface can change from

a smooth to a rough one by the use of suitable inserts. The rough

insert used had a periodic two-dimensional roughness consisting of

0.014" (0.0356 ca.) high ridges ("teeth") running perpendicular to the

flow vector. The Reynolds number based on this roughness height

exceeds the one considered adequate for de-stabilizing the boundary

layer, as was already discovered in the first year (1980-81) of the

research. In addition to the rough-surface insert, a smooth-surface

insert was also made for tare measurements.

A thorough flow-field study was completed for both the smooth and

the rough Surfaces, with the aim of deducing the dependence of the

boundary layer profile shape, layer kinematic and momentum thicknesses

and momentum Reynolds number on the stagnation pressure and distance x

from the leading edge. The test conditions were supply pressures of

600, 475, and 350 mm. Hg., temperatures of 1000 F. and 1250 F. and a

fixed stream Mach number of 3, producing unit Reynolds numbers of

33,000, 46,000, and 58,000 cm- 1. The measurements consisted of

surface pressures, surface temperatures, and 65 pitot-tube profiles

from the leading edge to the transition zone (roughly 0 (x (15 cm.).

The results of the flowfield measurements, which are essential

for the study of the stability were:

1. Transition to turbulence, which begins at 9 x 12 cm. for the

3



smooth wall (460(R1e0( 600), begins earlier for the rough wall

%. i (8<x <10 ca., 370<Re <530), the variations quoted here denoting a

unit-Reynolds-number effect. (Figure 1)

2. The laminar boundary layer over the smooth wall is in very good

agreement with theoretical (Blasius) expectations. (Figure 2)

3. The flow over the rough-wall ridges is of the skimming type; i.e.

the cavities formed by the teeth are closed. (Figure 3)

4. The velocity profiles of the rough-vall boundary layer are

surprisingly similar to those over the smooth wall, a result

previously reported for randomly-rough walls at low speeds. The

differences are too small to reveal a systematic effect of the

roughness, although the latter generally tends to decelerate the flow

near the wall. (Figures 4 and 5)

The dual observation of transition enhancement by the roughness,

and the very feeble effect of the latter on the profile, means that

for roughness heights exceeding the critical, the boundary layer

stability is very sensitive to roughness. In turn, this means that
'.9.

there will be some difficulty in attributing observed instabilities to

a particular profile distortion -- not an uncommon occurrence in tests

of this type.

About half of the final stability data with the hot-wire

anemometer, those pertaining to the rough wall, were also obtained

during this period. For each of the three fixed supply pressures, a

0.00002"-dia. hot-wire anemometer was held fixed in the boundary layer

at each of about 70 equally spaced positions, from the leading edge to

near the end of the flat plate model (3 x 70 - 210 points total).
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Ten-second "bursts" of hot-wire signals were recorded on analog tape

at each position. In addition, a second group of data was recorded

which was identical to that obtained in the layer, except that the

second group was obtained in the free stream along a line parallel to

the surface, and located about 4 boundary layer thicknesses above the

latter.

The hot-wire data just mentioned constitute the main measurements

of this research, and their analysis is expected to occupy the current

(final) year of this grant. In the meantime, however, tentative

examination of these data, examples of which are shown on Figure 6,

showed ample evidence that hydrodynamic stability is at work in the

rough-surface boundary layer. Stability theory predicts a region of

damped disturbances at low Reynolds numbers (small x), followed by a

high-frequency amplification regime which is in turn followed by low-

frequencyamplification. A series of power spectra taken along

increasing x would thus show an initial uniform decrease of the

spectrum followed by spectra with a "hump" at mid-frequencies and

eventually by a spectrum monotonically decreasing with frequency.

This sequence of events indeed appears on Figure 6.

The following work is planned or 1983-1984:

a. Measurement of the stability of the smooth (tare)

surface with the hot-wire, in a manner analogous to

that shown on Figure 6 for the rough wall.

b. Reduction of the smooth-wall and rough-wall hot-

wire data to uncover differences in amplification

factors, and in the dependence of the stability

5
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diagram on roughness.

c. Comparison with smooth-vail supersonic stability

data obtained elsewhere.

d. Similar reduction of the data obtained in the

free stream, to see to what extent the stream

turbulence affects either the smooth- or the

rough-vall stability.

e. Quantitative measurement of the stream turbulence.
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Figure 2. Comparison of measured boundary-layer velocity profiles with
theory. Profile points beyond 10 cm deffcnstrate transition to turbulence.
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Fiue 3. Velocity profiles taken over the "valleys" between ridges and
t-hoseta-ken over the ridges themselves are identical, showing that the
flow "skims" over the ridges and that the cavities are "open".
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Fiqure 4. Velocity profiles over the rough wall show very little

difference from the theoretical (Blasius) profiles.
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shows a small difference indicating that the roughness generally

igudecelerates the boundary-layer flow.
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